Postdoctoral fellow Surabhi Simha demonstrates how researchers tested whether robotic ankle exoskeleton boots can help people with their balance when its disrupted. Subjects wore sensors for motion capture, muscle activity, and ultrasound while they stood on a platform that shifts abruptly to disrupt their balance. Research engineer Rish Rastogi, right, monitors some of the data being collected.
Wearable robotics promise to help older people retain their mobility and paraplegic patients regain theirs. But, so far, they’re not great at keeping people from falling.
Human balance is a complicated dance, and even the most advanced robots and wearables like robotic exoskeletons have trouble replicating how our brains and bodies work together to keep us upright.
In a paper published Feb. 15 in Science Robotics, the group, led by McCamish Distinguished Chair Lena H. Ting, showed an ankle exoskeleton must react faster than our bodies to improve balance. Participants didn’t recover any more quickly when the exoskeleton delayed applying power until the same time muscles in the leg and ankle activated to restore balance.
Latest BME News
Georgia Tech grad reflects on his rookie season as a biomechanics engineer with the New York Mets
First-year students learned about the resources and support they could access during their college journey in BME.
BME assistant professor using Sloan Scholars Mentoring Network seed grant to support her lab's work
Coulter Department honors Jaydev Desai, Melissa Kemp, Gabe Kwong, and Johnna Temenoff
Biomedical engineer will present groundbreaking mapping tool aimed at drug resistant cancers at BMES Annual Meeting
BME researcher Yue Chen using NSF CAREER Award to develop MRI-safe surgical robot
Emory-Georgia Tech team develop new tools to address parasitic infection that affects 250 million people in 78 countries
When we lose our vision, does our hearing get stronger? Ming-fai Fong is trying to find out, while enhancing lives through community-driven research