Jaydev Desai, professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, received one of his first NIH R01 grants since arriving at Georgia Tech. Formerly a professor in the Department of Mechanical Engineering at the University of Maryland, Desai has been the recipient of several R01 grants.
In addition to Desai, who is the contact-PI, the team includes Muralidhar Padala, an assistant professor of cardiothoracic surgery at Emory, and a Coulter Department faculty member; and Baowei Fei, formerly of Emory, now at the University of Texas-Dallas.
The title of their project supported by the $3-million, four-year grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of NIH is, “Image-guided Intravascular Robotic System for Mitral Valve Repair and Implants.” Desai’s role in the research, essentially, is to develop an articulated intravascular steerable robotic system which will safely deliver an implant (developed at Emory) to the mitral valve leaflets under image-guidance, to repair mitral regurgitation.
“This work involves several pieces,” Desai said. “There is the design of the implant, intravascular robotics, and the imaging piece, which helps the clinician to guide the robot and understand where and how to move and where to place the implant. So, this is a true collaborative effort.”
News Contact Info:
Jerry Grillo
Communications Officer II
Parker H. Petit Institute for
Bioengineering and Bioscience
Media Contact
Jerry Grillo
Keywords
Latest BME News
In this edition of Ferst Exchange, Coulter BME's Aniruddh Sarkar explains the science.
Georgia Tech researchers uncover the role of lateral inhibition in enhancing contrast and filtering distractions, with implications for neuroscience and AI.
Graduate BME students are tackling heart disease and training to become leaders and innovators in cardiovascular research
BME undergrad is first student from Coulter department and one of three from Georgia Tech to earn aerospace honor
Coulter BME researchers develop 3D-printed, bioresorbable heart valve, potentially eliminating the need for repeated surgeries.
The 2007 BME alum will lead efforts to bring medical technologies to market.
BME graduate leveraging Coulter experience to bridge continents and inspire students