Skip to main content
x

Here’s an example (pictured) of how 3D printing can be applied to pediatric cardiology. It’s also an example of how Georgia Tech, Emory and Children’s Healthcare of Atlanta all work together.

Biomedical engineers used a modified form of gelatin to create a model of pulmonary arteries in newborn and adolescent patients with a complex (and serious) congenital heart defect: tetralogy of Fallot with pulmonary atresia. The model allowed the researchers to simulate surgical catheter-based intervention in vitro.

The results were recently published in Journal of the American Heart AssociationVahid Serpooshan, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Tech, and his lab collaborated with Sibley Heart Center pediatric cardiologist Holly Bauser-Heaton; both are part of the Children’s Heart Research and Outcomes Center.

“This is a patient-specific platform, created with state-of-the-art 3D bioprinting technology, allowing us to optimize various interventions,” Serpooshan says.

Media Contact

Walter Rich

Keywords



Latest BME News

In this edition of Ferst Exchange, Coulter BME's Aniruddh Sarkar explains the science.

Georgia Tech researchers uncover the role of lateral inhibition in enhancing contrast and filtering distractions, with implications for neuroscience and AI.

Graduate BME students are tackling heart disease and training to become leaders and innovators in cardiovascular research

BME undergrad is first student from Coulter department and one of three from Georgia Tech to earn aerospace honor

Coulter BME researchers develop 3D-printed, bioresorbable heart valve, potentially eliminating the need for repeated surgeries.

The 2007 BME alum will lead efforts to bring medical technologies to market.

BME graduate leveraging Coulter experience to bridge continents and inspire students