Skip to main content
x

James Dahlman, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, and a researcher in the Petit Institute for Bioengineering and Bioscience at Georgia Tech, received the Gene Delivery and Gene Editing Focus Group (GDGE) Young Investigator Award given by the Controlled Release Society.

This is his second gene-related new investigator award in 2020 as he previously won the Outstanding New Investigator Award given by the American Society of Gene & Cell Therapy (ASGCT) earlier this year. He is also the recipient of the Outstanding Achievement in Early Career Research 2020 award given by the Georgia Institute of Technology.

Dahlman's laboratory works at the interface of drug delivery and genomics by applying "big data" and "technology development" approaches to nanomedicine. Dahlman and his students have developed DNA barcoded nanoparticles to measure how hundreds of nanoparticles deliver mRNA and siRNA in multiple cell types in vivo, all from a single animal. Since late 2016, the lab has used this approach to quantify more than 4,500 nanoparticles in vivo, thereby identifying nanoparticles that target new cell types without ligands. His lab hopes to apply systems biology approaches to nanomedicine, in order to improve the efficacy of gene therapies and identify genes acting as master regulators of nanoparticle delivery in vivo.

Dahlman explained that using DNA barcodes allows researchers to overcome what had been a laborious and time-consuming process. Now hundreds of different nanoparticle types can be tested at once to see which are more effective to safely deliver drugs. His research has spawned the creation of a new company called GuideRX.

 

About the Gene Delivery and Gene Editing Focus Group in CRS:

The Gene Delivery and Gene Editing Focus Group (GDGE) focuses on creating a better fundamental understanding of the barriers of gene delivery and editing, designing improved carriers, and realizing opportunities for therapeutic intervention. Relevant topics include nucleic acid-based approaches for generating therapeutic proteins (e.g. mRNA, pDNA), eliminating disease-causing proteins (e.g. SiRNA, miRNA, ASOs), and precisely editing the genome (e.g. CRISPR/Cas, TALENs, ZFNs).


About the Controlled Release Society:

The Controlled Release Society (CRS) is a not-for-profit organization devoted to the science and technology of controlled release. The field of controlled release encompasses scientific and technical efforts to regulate the spatial and temporal effects of agents in diverse areas including human and animal health as well as non-pharmaceutical areas.

 

 

Media Contact:

Walter Rich

Communications Manager

Wallace H. Coulter Department of Biomedical Engineering

Georgia Institute of Technology

Media Contact

Walter Rich

Keywords



Latest BME News

Researchers demonstrate stem cell treatment without chemotherapy and painful bone marrow procedure

BME researchers explore the critical role of mechanical force in rare genetic disorder

Researchers develop spatial transcriptomics toolkit that provides new insights into the molecular processes of life

Air Detectives take top prize to give department three straight victories in Expo competition  

Coulter BME community gathers at the Fabulous Fox to celebrate anniversary of unique public-private partnership

Coskun pioneering new research area and building a company around iseqPLA technology 

BME undergraduate student and competitive skater Sierra Venetta has found success on and off the ice

BME researcher Ankur Singh using new technology to uncover weakened response in cancer patients