Celltrion signed an “incubation” agreement with Emory University to jointly research and develop new drug candidates for atherosclerosis. An incubation agreement is an open innovation arrangement in which a firm provides its resources and business capabilities, such as research facilities, workforce and operations consulting, to an external research institute. The arrangement aims to ensure the autonomy of the research while obtaining preferential rights to discuss commercializing the research output.
Under the agreement, Celltrion will share its accumulated biologics development expertise with the Emory University School of Medicine and the Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Tech, and provide research costs and manufacturing materials of new drug candidates for atherosclerosis. Celltrion will have a preferential right to acquire a license for inventions resulting from the agreement.
Atherosclerosis is a vascular disease, in which the blood vessels are narrowed or clogged due to plaque made up of fat, cholesterol, immune cells and vascular wall cells in the blood vessel. This results in ischemic heart diseases, such as myocardial infarction and angina, as well as stroke or peripheral arterial disease. Ischemic heart disease and stroke are the world’s leading causes of death, accounting for a combined 15.2 million deaths worldwide in 2016.
Statins that lower cholesterol and lipid levels in blood are widely used to alleviate the onset and progression of atherosclerosis. Despite the success of lipid lowering drugs, atherosclerotic diseases continue to be a major cause of death worldwide. This highlights the need to develop new drugs that can complement the lipid lowering drugs by targeting new mechanisms of action to prevent and reduce the risk of atherosclerotic diseases, Celltrion said.
“We are delighted to cooperate with the internationally renowned research team at Emory University led by Dr. Hanjoong Jo, John and Jan Portman, Endowed Professor and associate chair in the Coulter Department of Biomedical Engineering and the Division of Cardiology, who is a leader in the area of mechanically regulated genes in atherosclerosis research,” said Celltrion.
Media Contact:
Walter Rich
Communications Manager
Wallace H. Coulter Department of Biomedical Engineering
Georgia Institute of Technology
Media Contact
Walter Rich
Keywords
Latest BME News
Researchers demonstrate stem cell treatment without chemotherapy and painful bone marrow procedure
BME researchers explore the critical role of mechanical force in rare genetic disorder
Researchers develop spatial transcriptomics toolkit that provides new insights into the molecular processes of life
Air Detectives take top prize to give department three straight victories in Expo competition
Coulter BME community gathers at the Fabulous Fox to celebrate anniversary of unique public-private partnership
Coskun pioneering new research area and building a company around iseqPLA technology
BME undergraduate student and competitive skater Sierra Venetta has found success on and off the ice
BME researcher Ankur Singh using new technology to uncover weakened response in cancer patients