Skip to main content
x

DNA is increasingly being used as a building material to construct tiny, but sophisticated structures such as autonomous ‘DNA walkers’ that can move along a microparticle surface, fluorescent labels for diagnostic applications, ‘DNA boxes’ that serve as smart drug-delivery vehicles, or programmable factories for nanoparticles for new optical and electronic applications.

To accommodate these functions, researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and around the world have developed ways that allow DNA strands to self-assemble into increasingly complex 3D structures. Yonggang Ke, now an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, was part of that pioneering team of researchers at Harvard as a postdoctoral fellow.

And most recently Ke, who also is a researcher in the Petit Institute for Bioengineering and Bioscience at Georgia Tech, was corresponding author on a collaborative study with Harvard that leapfrogs the technology by two orders of magnitude, enabling next-generation DNA bricks to self-assemble into 3D nanostructures that are 100 times more complex than those created with existing methods. The research is published in Nature.

Click here to read the story and see the video from the Wyss Institute. Click here to read the research in Nature.

 

 

Media Contact

Jerry Grillo

Communications Officer II

Parker H. Petit Institute for

Bioengineering and Bioscience

Keywords



Latest BME News

Georgia Tech authors reflect a rapidly evolving field in new edition highlighting real-world applications

 

Hands-on approach to teaching microfluidics is inspiring future innovators

In this edition of Ferst Exchange, Coulter BME's Aniruddh Sarkar explains the science.

Georgia Tech researchers uncover the role of lateral inhibition in enhancing contrast and filtering distractions, with implications for neuroscience and AI.

Graduate BME students are tackling heart disease and training to become leaders and innovators in cardiovascular research

BME undergrad is first student from Coulter department and one of three from Georgia Tech to earn aerospace honor

Coulter BME researchers develop 3D-printed, bioresorbable heart valve, potentially eliminating the need for repeated surgeries.