Skip to main content
x

Andres Caballero, postdoctoral fellow, won the 2020 Sigma Xi Best Ph.D. Thesis Award from Georgia Tech. Caballero earned his Ph.D. in biomedical engineering from Georgia Tech and works as a postdoctoral fellow in the lab of Wei Sun, associate professor, in the Wallace H. Coulter Department of Biomedical Engineering.

 

Caballero won for his Ph.D. thesis: “Computational Modeling of Left Ventricle-Valve Dynamics using a Fluid-Structure Interaction Framework.”

 

Past work by Caballero includes developing and validating the first fully-coupled fluid-structure interaction (FSI) modeling framework that describes the 3D blood flow dynamics and the heart valves structural response of the human heart throughout the cardiac cycle. His patient-specific computer tool incorporated imaged-based cardiac wall motion, anatomically accurate valve geometries, nonlinear hyper elastic constitutive models, and human age- and gender-matched material properties.

 

Most of the previous patient-specific computer models either solved the fluid or structural physics alone, were limited to idealized or 2D geometries, adopted linear elastic material models, focused on a short time frame of the cardiac cycle, or did not incorporate all cardiac structures. Overall, previously developed computer technologies only provided an incomplete picture of the heart mechanical environment, and did not yield detailed data on the loads applied to the heart valves that arise from the coupled blood and tissue interactions.

 

Caballero tackled this problem during his doctoral studies by developing a novel computer modeling tool that allows to accurately simulate the FSI between the heart structures and the blood under numerous physiologic, diseased and post-operative conditions. From a clinical perspective, such capability, not previously available, is an invaluable tool to better understand each patient’s unique cardiac anatomy and blood flow without doing invasive clinical measurements or idealized bench experiments, thus eventually speeding the process of personalizing treatment decisions.

 

His overall research work offers potential to inform the therapeutic decision-making process, support better device design, as well as provides insight into patient-specific surgical planning tools, ultimately supporting improved clinical outcomes.

 

 

Media Contact:
Walter Rich

Communications Manager

Wallace H. Coulter Department of Biomedical Engineering

Georgia Institute of Technology

Media Contact

Walter Rich

Keywords



Latest BME News

Researchers demonstrate stem cell treatment without chemotherapy and painful bone marrow procedure

BME researchers explore the critical role of mechanical force in rare genetic disorder

Researchers develop spatial transcriptomics toolkit that provides new insights into the molecular processes of life

Air Detectives take top prize to give department three straight victories in Expo competition  

Coulter BME community gathers at the Fabulous Fox to celebrate anniversary of unique public-private partnership

Coskun pioneering new research area and building a company around iseqPLA technology 

BME undergraduate student and competitive skater Sierra Venetta has found success on and off the ice

BME researcher Ankur Singh using new technology to uncover weakened response in cancer patients